

Application Guide: Pharmaceutical Drugs (Assay and Impurity profiling) using Avantor® ACE® Generix® Columns

Avantor® ACE® Generix®

HIGH PERFORMANCE, EXCELLENT VALUE HPLC AND UHPLC COLUMNS

High Efficiency 1.8, 3 and 5 µm Particles

- High purity spherical silica
- Ultra-narrow particle size distribution for excellent column efficiency
- C18, C8, Phenyl-Hexyl and SIL phases

Excellent Reproducibility

- Manufactured in the UK in ISO9001 and ISO14001 accredited facilities
- Sharp, highly symmetrical peaks for acidic, basic and neutral analytes
- Every column individually tested and supplied with a test chromatogram
- Excellent column-to-column and batch-to-batch reproducibility

Excellent Column Lifetime

- Highly stable bonded phases for long column lifetimes
- Ultra-robust HPLC and UHPLC column packing technology
- High performance guard system available

Phase Specifications

Bonded Phase*	Particle Size (µm)	Surface Area (m²/g)	Pore Size (Å)	Carbon Load (%)	Recommended pH Range*	USP Listing
C18(2)	1.8, 3 and 5	350	95	20.3	2.0-8.0	LI
C8(2)	1.8, 3 and 5	350	95	11.9	2.0-8.0	L7
Phenyl-Hexyl	1.8, 3 and 5	350	95	15.2	2.0-8.0	LII
SIL	3 and 5	350	95	-	2.0-8.0	L3

"The full range of Avantor" ACE" HPLC and UHPLC columns is available with 17, 2, 3, 5 and 10 µm particle sizes and a wider range of stationary phase options. "For optimum column lifetime, a pH range of 2-8 is recommended. To increase column lifetime at mid/high pH, organic buffers, low buffer concentrations, high % organic solvent and low temperatures must be considered. Further information is contained within "A Guide to HPLC and LC/MS Buffer Selection" by John Dolan.

Application Index

Sr. No.	Molecules Name	Page No
1.	Ibuprofen	03
2.	Naproxen Sodium	04
3.	Citicoline	05
4.	Deflazacort	07
5.	Aciclovir	09
6.	Ivermectin Tablet	12
7.	Dapagliflozin	13
8.	Empagliflozin	15
9.	Sulfapyridine	16

All these methods developed in ACE[®] Generix[®] and reproduced with permission from Force Scientific, Vadodara.

lbuprofen	Application: # C-13288
Column	ACE Generix C18 (2) 5µm 250X4 6
Injection	10 ul
Detection	UV 220 nm
Cell	10 uL
Flow Rate	1.0 mL/min
Mobile Phase	Buffer: Acetonitrile (30:70)
Buffer	0.7 ml of 85 % orthophosphoric acid in 1000 ml Water
Diluent	Mobile Phase
Temperature	Ambient
Autosampler Temp	5°C
Sample preparation	Weight accurately about 400mg of Ibuprofen into, 100 ml volumetric flask, add 60 ml of acetonitrile, sonicate and make up volume to 100 ml with 0.01M Orthophosphoric acid. Then Transfer 5ml from this solution into 50 ml volumetric flask and dilute to volume with mobile phase
1 700 1 600 1 400 1 200 1 000 1	$\frac{1}{60} \cdot \frac{1}{60} \cdot \frac{1}{10} \cdot \frac{1}{12} \cdot \frac{1}{140} \cdot \frac$

The Avantor ACE 5 Generix (2) 250 x 4.6 mm column is an excellent choice for the quantification of Ibuprofen due to its well-suited properties for handling a broad range of analytes.

- Here's a detailed explanation of the reasons behind its suitability:
 - 1. The ACE 5 Generix (2) column is designed for a wide range of compounds, making it ideal for both simple and complex analytical separations.
 - 2. The C18-like stationary phase ensures consistent retention of non-polar compounds like ibuprofen, as well as other analytes, contributing to its versatility.

Naproxen Sodium	Application: # C-13289			
Column	ACE Generix C18 (2) 5µm 250X4.6			
Injection	20 μL			
Detection	UV 254 nm			
Cell	10 µL			
Flow Rate	1.2 mL/min			
Mobile Phase	Acetonitrile, glacial acetic acid and water (50:1:49)			
Diluent	Acetonitrile and water (9:1)			
Temperature	Column oven temp: 25°C			
Autosampler Temperature	10°C			
Sample preparation:	Transfer an amount equivalent to 250 mg of naproxen, to a 100-			
	mL volumetric flask. Add 10 mL of water and sonicate for 10			
	min. Add 80 mL of acetonitrile and dilute with acetonitrile to			
	volume. Transfer 1.0 mL of the clear supernatant			

The ACE Generix 5 C18 (2) 250 x 4.6 mm column is an ideal choice for the analysis of Naproxen sodium, a non-steroidal anti-inflammatory drug (NSAID), due to the following reasons:

- 1. Naproxen sodium is a relatively non-polar compound, and the C18 (octadecylsilane) phase is highly hydrophobic, making it suitable for the retention of non-polar molecules.
- 2. Naproxen sodium analysis often requires separation from its impurities, degradation products, and excipients present in formulations. The ACE Generix C18 (2) column's high efficiency ensures sharp and well-resolved peaks, allowing precise separation of naproxen from these related compounds.
- 3. The **dual Endcapped chemistry** of the C18 (2) phase minimizes secondary silanol interactions, reducing peak tailing and enhancing the resolution, which is critical in identifying impurities.

Citicolino	Application: #C 12290	
Column	ACE Generix 5 C18 (2) 250 x 4 6 mm	
Injection	15 ul	
Detection	10 µ2	
Cell	10 ul	
Flow Bate:	1.0 ml /min	
	10 mM tetrabutylammonium hydroxide and 15 mM dibasic	
	sodium phosphate aphydrous, adjusted with 20%	
Mohile Phase	phosphoric acid to a pH of 6.0	
Solvent mixture	Water	
Gradient:		
	$ \begin{array}{ c c c c } \hline Time & A & B \\ \hline (\%) & (\%) \\ \hline 0 & 100 & 0 \\ \hline 5 & 100 & 0 \\ \hline 15 & 85 & 15 \\ \hline 20 & 85 & 15 \\ \hline 21 & 100 & 0 \\ \hline 35 & 100 & 0 \\ \hline \end{array} $	
Temperature:	<i>Δ</i> Ω°C	
Standard solution	2 / ug/mL of LISP Citicoline BS in water	
Sample solutions	24 µg/mL of Citicoline in water	
Blank 40 0 77 0 27 0 15 0 16 0 5 0		

impurities.

Deflazacort	Application: # C-13292
Column	ACE Generix 5 C18 (2) 250 x 4.6 mm
Injection	20 μL
Detection	UV 254 nm
Cell	10 µL
Flow Rate	1.0 mL/min
Mobile Phase	Mix HPLC water and Acetonitrile 60:40 (v/v)
Solvent mixture	Mobile phase
Temperature	Ambient
Test solution	Dissolve 25 mg of sample in 50 ml mobile phase
Reference solution	Dissolve 2 mg of Deflazacort in 50 ml mobile phase

Blank

Standard

Peak	Retention	Dook Nomo	Aroa	Aroo	Tailing	Popolution	Theoretical
No	Time	Peak Name	Alea	Alea	Talung	Resolution	meoreticat
1	2.158	Component 1	15902	0.15	1.2		22938
2	4.723	Component 2	18231	0.18	1.11	25.68	17507
3	9.052	Component 3	67582	0.66	1.07	21.38	19086
4	13.245	Deflazacort	10159939	99.01	1.08	13.04	19333

The ACE Generix 5 C18 (2) 250 x 4.6 mm column plays a crucial role in the related substance testing of Deflazacort, a glucocorticoid used for treating conditions such as Duchenne muscular dystrophy. Related substance tests are essential for determining impurities, degradation products, and potential contaminants in pharmaceutical formulations.

Deflazacort is a lipophilic compound with non-polar characteristics. The C18 bonded phase of the ACE Generix column provides optimal hydrophobic interactions, enabling efficient retention of Deflazacort and its related substances. This allows for a clear separation of structurally similar impurities.

The ACE Generix 5 C18 (2) column is compatible with a wide range of mobile phases, including aqueous-organic mixtures commonly used in pharmaceutical analyses. This flexibility is important for optimizing the separation of polar and non-polar impurities in Deflazacort, while maintaining excellent peak shape and reproducibility.

Aciclovir					Application: # C-13291		
Column	ACE Gene	erix 5 C18 (2	2) 250 x 4.6	mm			
Injection	10 µL						
Detection	UV @ 254	nm					
Cell	10 µL						
Buffer Solution	Phosphat	Phosphate buffer solution pH 2.5. Dissolve 3.48 g of dipotassium					
	hydrogen	phosphate	. Phosphate	buffer solu	ition pH 3.1. Dissolve 3.48		
	g of dipota	assium hyd	rogen phos	ohate in 10	00 mL of water. Adjust to		
	pH 3.1 wit	th phospho	ric acid.				
Mobile Phase A	Acetonitri	le, phosph	ate buffer so	olution pH 3	3.1 (1:99 V/V).		
Mobile Phase B	Acetonitri	le, phosph	ate buffer so	olution pH 2	2.5 (50:50 V/V).		
Gradient				_			
	Time	0/6 Δ	%B				
	(min)	704	/00				
	0	100	0				
	5	100	0]			
	27	80	20	1			
	40	80	20	1			
	41	100	0				
	50	100	0	-			
	50	100	0				
lemperature	30° C						
Sample cooler	10°C	16 . 1		001/00			
Diluent	Dimethyl	sulfoxide	, water (20	:80 V/V).			
Standard Solution	Dilute 1.0) mL of the	e test soluti	on to 100.	0 mL with the solvent		
	the ealure	Further DI	lute 1.0 mL	of this sol	ution to 10.0 mL with		
Sample Solution		The main of the	o cubetanco	to be over	ainad in E. 0 mL of dimothyl		
Sample Solution	sulfovide	and dilute t	to 25.0 ml w	ith water	inted in 5.0 mE of differing		
	Sutionide		10 23.0 ML W	nui watei.			
18.0-					ACICIOVII		
16.0					0		
14.0							
12.0-					HN T-N		
10.0-							
60-					H ₂ N N N		
40					CH2OCH2CH2OH		
2 0							
11					1		

Sample Solution

Peak	Ret.Time	Peak Name	Area	Area	Tailing	Resolution	Theoretical	Rel. Bet Time
1	5.428	Component 1	24807	0.08	n.a.	n.a.	187	0.37
2	5.628	Impurity B	92779	0.31	n.a.	0.23	14877	0.38
3	14.663	Aciclovir	29712817	99.27	0.88	44.23	68580	1
4	15.937	Component 4	6193	0.02	1.01	6.22	118462	1.09
5	17.22	Component 5	1073	0	1.03	7.89	241937	1.17
6	19.323	Component 6	1242	0	0.88	15.05	307105	1.32
7	19.547	Component 7	6346	0.02	1.07	1.34	161418	1.33
8	20.08	Impurity N	26246	0.09	1.02	2.79	183899	1.37
9	20.947	Impurity O	3548	0.01	1.05	4.85	243102	1.43
10	22.185	Component 10	4929	0.02	n.a.	n.a.	n.a.	1.51
11	22.237	Component 11	8114	0.03	n.a.	n.a.	230857	1.52
12	24.068	Impurity J	4770	0.02	1.2	8.86	177785	1.64
13	25.197	Component 13	3058	0.01	0.98	5.2	239673	1.72

14	26.057	Component 14	8223	0.03	0.92	3.46	127579	1.78
15	27.758	Component 15	13847	0.05	1.03	7.08	346731	1.89
16	34.165	Component 16	13506	0.05	0.99	27.52	243362	2.33

The High-Performance Liquid Chromatography (HPLC) analysis of Aciclovir for the related substance test plays a crucial role in ensuring the quality and purity of the pharmaceutical product. In this study, the ACE Generix 5 C18(2) 250 x 4.6 mm column was utilized due to its optimal performance in separating and detecting impurities. The column's selectivity, efficiency, and reproducibility significantly contributed to accurate and reliable results, enabling the identification of potential impurities in the Aciclovir sample. This method demonstrates the effectiveness of the ACE Generix C18(2) column in supporting the stringent requirements of pharmaceutical quality control.

Ivermectin Tablet	Application: # C-13293
Column	ACE Generix 5 C18 (2) 250 x 4.6 mm
Injection	10 µL
Detection	UV @ 245 nm
Cell	10 µL
Flow Rate	1.2 mL/min
Mobile Phase	Mix Acetonitrile, Methanol and water 53:35:12 (v/v/v)
Temperature	30°C
Diluent	Methanol
Standard Solution	Dissolve 2.5 mg of Ivermectin Working Std in 10 ml volumetric flask.
	Dissolve in methanol. Dilute up to the mark with methanol.
Sensitivity Solution	Take 1 ml of the Standard solution and dilute to 100 ml with methanol.
	Further dilute 1 ml of this solution to 5 ml with methanol.
Test Solution	Take 5 powdered tablets in 250 ml volumetric flask. Add 25 ml of
	water. Sonicate for 10 mins. Add 200 ml of methanol and sonicate
	further for 5 mins. Allow the solution to cool at room temp. Dilute up
	to the mark with methanol.

The assay test for Ivermectin tablets was conducted using High-Performance Liquid Chromatography (HPLC) with an ACE Generix 5 C18(2) 250 x 4.6 mm column. This column was selected for its exceptional performance in achieving precise and accurate quantification of Ivermectin in the tablet formulation. The method employed demonstrated excellent separation efficiency and repeatability, ensuring reliable determination of the active pharmaceutical ingredient (API). The ACE Generix C18(2) column's compatibility with the Ivermectin matrix allowed for a robust assay procedure, making it a suitable choice for routine quality control analysis of Ivermectin tablets.

Dapagliflozin				Application: <u># C-13294</u>			
Column	ACE Generi	x 5 C18 (2)	250 x 4.6 m	im			
Injection	20 µL						
Detection	UV 225 nm						
Cell	10 µL						
Flow Rate	0.8 mL/min						
Mobile Phase A	Add 1 ml of	orthophos	phoric acid	in 1 L of water. Pass through 0.45-			
	µm or finer	porosity m	embrane fil	er.			
Mobile Phase B	Acetonitrile	;					
Diluent	Degassed r	nixture of w	ater and ac	etonitrile in the ratio of 50:50 v/v			
Gradient							
	Time	% A	% B				
	0.01	80	20				
	10	60	40				
	25	60	40				
	35	40	60				
	50	2	98				
	65	2	98				
	67	80	20				
	75	80	20				
Sample preparation	Dissolve 4.0 add 5 ml dil diluent. 0.0006 mg diluent.	0 mg of Da luent and s /ml concer	pagliflozin s onicate to c itration of s	ample into 10 ml volumetric flask, issolve, make up to volume with olution using Dapagliflozin in			
•							
Blank				Dapagliflozin			
70- 60- 50- 40- 30- 20- 10- 0- 		luvl_					

							Theoretical	
Peak	Ret.Time	Peak Name	Area	Area	Tailing	Resolution	Plates	S/N
1	11.947	Component 1	50531	0.1	0.77	n.a.	40970	34.4
2	14.8	Component 2	42760	0.08	0.96	13.5	100505	36
3	20.64	Dapagliflozin	50796258	99.75	0.82	21.32	52256	19094.1
4	24.51	Component 4	15638	0.03	1.07	9.98	56061	6.1
5	25.105	Component 5	18413	0.04	1.01	1.24	33600	6.8

The related substance test for Dapagliflozin was carried out using High-Performance Liquid Chromatography (HPLC) with an ACE Generix 5 C18(2) 250 x 4.6 mm column. This method was selected for its ability to deliver high-resolution separation of impurities from the Dapagliflozin active ingredient. The column's efficiency and selectivity ensured accurate detection and quantification of related substances, adhering to the stringent requirements of pharmaceutical quality control.

Empagliflozin				Ар	plication: #	+ C-13295			
Column	ACE Gener	ix C18 (2) 5	jµm 250X4	.6					
Injection	20 µL								
Detection	UV 274 nm								
Cell	10 µL								
Data Collection Rate	10 Hz	10 Hz							
Flow Rate	1.0 mL/mir	ı							
Buffer Solution	Buffer: Dis	solve 1.36 g	g of Potassi	um dihydrog	gen phospha	te in 1000			
	mL of HPLC Water. Adjust the pH to 3.0 with dilute phosphoric acid.								
	Filter throu	gh 0.2 µm l	Nylon merr	brane filter.					
Mobile Phase A	Buffer								
Mobile Phase B	Acetonitrile	9							
Gradient		-		_					
	Time	%A	%B						
	0	80	20						
	5	80	20						
	35	30	70	1					
	36	80	20						
	46	80	20	-					
	L	1		1					
Diluent	Mix Buffer	and Aceto	onitrile 80:	20 (v/v).					
Diluent Temperature	Mix Buffer 30°C	and Aceto	onitrile 80:	20 (v/v).					

Assay of Empagliflozin using ACE Generix 5 C18 (2) 250 x 4.6 mm Column. The method using the ACE Generix 5 C18 (2) column is suitable for the assay of Empagliflozin, providing consistent and accurate results with well-defined chromatographic separation.

Sulfapyridine	Application: # C-13296
Column	ACE Generix C18 (2) 5µm 250X4.6
Injection	10 µL
Detection	UV 265 nm
Cell	10 µL
Flow Rate	1 mL/min
Mobile Phase A	10 ml Acetic acid in 1000 ml Water.
Mobile Phase B	Methanol
Diluent	Water: Methanol (77:23)
Gradient	See Table
Temperature	30°C
Autosampler	5°C
temperature	
Sample solution	25 mg / 100ml add 1ml 1M HCl and dilute with diluent.

Siano	and							
	ard	, 100	200	250	· ado · · · ·	- 36 o		
200 140 160 140	An and the second s							
	2.15 Statelie col		Bandward Components	2 ⁵ 0	· 300 · · · · ·			
An- an- 2n- 2n- 2n- 2n- 2n- 2n- 2n- 2n- 2n- 2	Ret.Time	Peak Name	Area	Area	Tailing	Resolution	Theoretical	Rel. Ret.Time.
An- an- an- an- an- an- an- an- a	Ret.Time	Peak Name	Area	Area	Tailing	Resolution	Theoretical	Rel. Ret.Time. (SPD) 0.34
An- on- 2n- 2n- 2n- 2n- 2n- 2n- 2n- 2	Ret.Time 2.338 3.135	Peak Name Sulfonic acid	Area 40213 166383	Area 0.21 0.88	Tailing 1.27 1.62	Resolution	Theoretical 12744 11605	Rel. Ret.Time. (SPD) 0.34 0.46
Peak 1 2 3	Ret.Time 2.338 3.135 6.788	Peak Name Sulfonic acid Sulfanilamide Sulfapyridine	Area 40213 166383 18384024	Area 0.21 0.88 96.73	Tailing 1.27 1.62 0.98	Resolution 	Theoretical 12744 11605 15405	Rel. Ret.Time. (SPD) 0.34 0.46 1
An- an- an- an- an- an- an- an- a	Ret.Time 2.338 3.135 6.788 9.912	Peak Name Sulfonic acid Sulfanilamide Sulfapyridine 6 Methyl SPD	Area 40213 18384024 88835	Area 0.21 0.88 96.73 0.47	Tailing 1.27 1.62 0.98 1.08	Resolution 8 21.8 11.72	Theoretical 12744 11605 15405 15917	Rel. Ret.Time. (SPD) 0.34 0.46 1 1.46
Peak 1 2 3 4 5	Ret.Time 2.338 3.135 6.788 9.912 11.363	Peak Name Sulfonic acid Sulfanilamide Sulfapyridine 6 Methyl SPD Component 5	Area 40213 166383 18384024 88835 89814	Area 0.21 0.88 96.73 0.47 0.47	Tailing 1.27 1.62 0.98 1.08 1.05	Resolution 8 21.8 11.72 4.33	Theoretical 12744 11605 15405 15917 16236	Rel. Ret.Time. (SPD) 0.34 0.46 1 1.46 1.67
Peak 1 2 3 4 5 6	Ret.Time 2.338 3.135 6.788 9.912 11.363 17.662	Peak Name Sulfonic acid Sulfanilamide Sulfapyridine 6 Methyl SPD Component 5 Component 6	Area 40213 166383 18384024 88835 89814 84019	Area 0.21 0.88 96.73 0.47 0.47 0.44	Tailing 1.27 1.62 0.98 1.08 1.05 1.07	Resolution 8 21.8 11.72 4.33 21.59	Theoretical 12744 11605 15405 15917 16236 97162	Rel. Ret.Time. (SPD) 0.34 0.46 1 1.46 1.67 2.6
Peak 1 2 3 4 5 6 7	Ret.Time 2.338 3.135 6.788 9.912 11.363 17.662 18.302	Peak Name Sulfonic acid Sulfanilamide Sulfapyridine 6 Methyl SPD Component 5 Component 7	Area 40213 166383 18384024 88835 89814 84019 76094	Area 0.21 0.88 96.73 0.47 0.44 0.4	Tailing 1.27 1.62 0.98 1.08 1.05 1.07 1.06	Resolution 8 21.8 11.72 4.33 21.59 2.7	Theoretical 12744 11605 15405 15917 16236 97162 87721	Rel. Ret.Time. (SPD) 0.34 0.46 1 1.46 1.67 2.6 2.7

The ACE Generix C18 (2) has been designed to minimize secondary interactions caused by residual silanol groups. This helps reduce peak tailing and improves peak symmetry, which is particularly beneficial in the analysis of polar compounds like Sulfapyridine.

Ordering Information

AVANTOR® ACE® GENERIX® 1.8 µm UHPLC COLUMNS

Columns Dimensions	Porticle size	UHPLC/HPLC	hardware pressure rated up to 1,000 bar / 15,000 psi		
		C18(2)	C8(2)	Phenyl-Hexyl	
2.1 x 50 mm	1.8 µm	GEN-18C182-0502U	GEN-18C82-0502U	GEN-18PHEX-0502U	
2.1 x 75 mm	1.8 µm	GEN-18C182-7502U	GEN-18C82-7502U	GEN-18PHEX-7502U	
2.1 x 100 mm	1.8 µm	GEN-18C182-1002U	GEN-18C82-1002U	GEN-18PHEX-1002U	
3.0 x 50 mm	1.8 µm	GEN-18C182-0503U	GEN-18C82-0503U	GEN-18PHEX-0503U	
3.0 x 75 mm	1.8 µm	GEN-18C182-7503U	GEN-18C82-7503U	GEN-18PHEX-7503U	
3.0 x 100 mm	1.8 µm	GEN-18C182-1003U	GEN-18C82-1003U	GEN-18PHEX-1003U	
Guard cartridges for 2.1-3.0 mm ID	UHPLC				
columns (3/pk)		GEN-C182-GDU	GEN-C82-GDU	GEN-PHEX-GDU	
LIHD C quard holder		H0011	H0011	H0011	

AVANTOR® ACE® GENERIX® 3 µm HPLC COLUMNS

	Porticle size	HPLC hardware pressure rated up to 275 bar / 4,000 psi					
		C18(2)	C8(2)	Phenyl-Hexyl	Sil		
2.1 x 50 mm	3 µm	GEN-3C182-0502	GEN-3C82-0502	GEN-3PHEX-0502	GEN-3SIL-0502		
2.1 x 75 mm	3 µm	GEN-3C182-7502	GEN-3C82-7502	GEN-3PHEX-7502	GEN-351L-7502		
2.1 x 100 mm	3 µm	GEN-3C182-1002	GEN-3C82-1002	GEN-3PHEX-1002	GEN-3SIL-1002		
2.1 x 125 mm	3 µm	GEN-3C182-1202	GEN-3C82-1202	GEN-3PHEX-1202	GEN-35IL-1202		
2.1 x 150 mm	3 µm	GEN-3C182-1502	GEN-3C82-1502	GEN-3PHEX-1502	GEN-35IL-1502		
3.0 x 50 mm	3 µm	GEN-3C182-0503	GEN-3C82-0503	GEN-3PHEX-0503	GEN-35IL-0503		
3.0 x 75 mm	3 µm	GEN-3C182-7503	GEN-3C82-7503	GEN-3PHEX-7503	GEN-35IL-7503		
3.0 x 100 mm	3 µm	GEN-3C182-1003	GEN-3C82-1003	GEN-3PHEX-1003	GEN-35IL-1003		
3.0 x 125 mm	3 µm	GEN-3C182-1203	GEN-3C82-1203	GEN-3PHEX-1203	GEN-35IL-1203		
3.0 x 150 mm	3 µm	GEN-3C182-1503	GEN-3C82-1503	GEN-3PHEX-1503	GEN-35IL-1503		
4.0 x 50 mm	3 µm	GEN-3C182-0504	GEN-3C82-0504	GEN-3PHEX-0504	GEN-35IL-0504		
4.0 x 75 mm	3 µm	GEN-3C182-7504	GEN-3C82-7504	GEN-3PHEX-7504	GEN-35IL-7504		
4.0 x 100 mm	3 µm	GEN-3C182-1004	GEN-3C82-1004	GEN-3PHEX-1004	GEN-35IL-1004		
4.0 x 125 mm	3 µm	GEN-3C182-1204	GEN-3C82-1204	GEN-3PHEX-1204	GEN-35IL-1204		
4.0 x 150 mm	3 µm	GEN-3C182-1504	GEN-3C82-1504	GEN-3PHEX-1504	GEN-35IL-1504		
4.6 x 50 mm	3 µm	GEN-3C182-0546	GEN-3C82-0546	GEN-3PHEX-0546	GEN-3SIL-0546		
4.6 x 75 mm	3 µm	GEN-3C182-7546	GEN-3C82-7546	GEN-3PHEX-7546	GEN-351L-7546		
4.6 x 100 mm	3 µm	GEN-3C182-1046	GEN-3C82-1046	GEN-3PHEX-1046	GEN-3SIL-1046		
4.6 x 125 mm	3 µm	GEN-3C182-1246	GEN-3C82-1246	GEN-3PHEX-1246	GEN-3SIL-1246		
4.6 x 150 mm	3 µm	GEN-3C182-1546	GEN-3C82-1546	GEN-3PHEX-1546	GEN-35IL-1546		
Guard cartridges for 2.1 mm ID HPLC columns (5/pk)		GEN-C182-GD2	GEN-C82-GD2	GEN-PHEX-GD2	GEN-SIL-GD2		
Guard cartridges for 3.0-4.6 mm ID HPLC columns (5/pk)		GEN-C182-GD	GEN-C82-GD	GEN-PHEX-GD	GEN-SIL-GD		
HPLC guard holder		H0010	H0010	H0010	H0010		

AVANTOR® ACE® GENERIX® 5 µm HPLC COLUMNS

	Particle size	HPLC hardware pressure rated up to 275 bar / 4,000 psi					
		C18(2)	C8(2)	Phenyi-Hexyi	Sil		
2.1 x 50 mm	5 µm	GEN-5C182-0502	GEN-5C82-0502	GEN-5PHEX-0502	GEN-5SIL-0502		
2.1 x 75 mm	5 µm	GEN-5C182-7502	GEN-5C82-7502	GEN-5PHEX-7502	GEN-5SIL-7502		
2.1 x 100 mm	5 µm	GEN-5C182-1002	GEN-5C82-1002	GEN-5PHEX-1002	GEN-5SIL-1002		
2.1 x 125 mm	5 µm	GEN-5C182-1202	GEN-5C82-1202	GEN-5PHEX-1202	GEN-551L-1202		
2.1 x 150 mm	5 µm	GEN-5C182-1502	GEN-5C82-1502	GEN-5PHEX-1502	GEN-551L-1502		
2.1 x 250 mm	5 µm	GEN-5C182-2502	GEN-5C82-2502	GEN-5PHEX-2502	GEN-551L-2502		
3.0 x 50 mm	5 µm	GEN-5C182-0503	GEN-5C82-0503	GEN-5PHEX-0503	GEN-551L-0503		
3.0 x 75 mm	5 µm	GEN-5C182-7503	GEN-5C82-7503	GEN-5PHEX-7503	GEN-55IL-7503		
3.0 x 100 mm	5 µm	GEN-5C182-1003	GEN-5C82-1003	GEN-5PHEX-1003	GEN-55IL-1003		
3.0 x 125 mm	5 µm	GEN-5C182-1203	GEN-5C82-1203	GEN-5PHEX-1203	GEN-55IL-1203		
3.0 x 150 mm	5 µm	GEN-5C182-1503	GEN-5C82-1503	GEN-5PHEX-1503	GEN-55IL-1503		
3.0 x 250 mm	5 µm	GEN-5C182-2503	GEN-5C82-2503	GEN-5PHEX-2503	GEN-55IL-2503		
1.0 x 50 mm	5 µm	GEN-5C182-0504	GEN-5C82-0504	GEN-5PHEX-0504	GEN-5SIL-0504		
4.0 x 75 mm	5 µm	GEN-5C182-7504	GEN-5C82-7504	GEN-5PHEX-7504	GEN-5SIL-7504		
1.0 x 100 mm	5 µm	GEN-5C182-1004	GEN-5C82-1004	GEN-5PHEX-1004	GEN-551L-1004		
1.0 x 125 mm	5 µm	GEN-5C182-1204	GEN-5C82-1204	GEN-5PHEX-1204	GEN-551L-1204		
1.0 x 150 mm	5 µm	GEN-5C182-1504	GEN-5C82-1504	GEN-5PHEX-1504	GEN-55IL-1504		
1.0 x 250 mm	5 µm	GEN-5C182-2504	GEN-5C82-2504	GEN-5PHEX-2504	GEN-5SIL-2504		
1.6 x 50 mm	5 µm	GEN-5C182-0546	GEN-5C82-0546	GEN-5PHEX-0546	GEN-5SIL-0546		
1.6 x 75 mm	5 µm	GEN-5C182-7546	GEN-5C82-7546	GEN-5PHEX-7546	GEN-5SIL-7546		
1.6 x 100 mm	5 µm	GEN-5C182-1046	GEN-5C82-1046	GEN-5PHEX-1046	GEN-55IL-1046		
1.6 x 125 mm	5 pm	GEN-5C182-1246	GEN-5C82-1246	GEN-5PHEX-1246	GEN-55IL-1246		
1.6 x 150 mm	5 µm	GEN-5C182-1546	GEN-5C82-1546	GEN-5PHEX-1546	GEN-5SIL-1546		
4.6 x 250 mm	5 µm	GEN-5C182-2546	GEN-5C82-2546	GEN-5PHEX-2546	GEN-55IL-2546		
Suard cartridges for 2.1 mm HPLC columns (5/pk)	ID	GEN-C182-GD2	GEN-C82-GD2	GEN-PHEX-GD2	GEN-SIL-GD2		
Guard cartridges for 3.0-4.6 D HPLC columns (5/pk)	mm	GEN-C182-GD	GEN-C82-GD	GEN-PHEX-GD	GEN-SIL-GD		
HPLC auard holder		H0010	H0010	H0010	H0010		

AVANTOR® ACE® GENERIX® HPLC COLUMN MULTIPACKS

Three column multipacks provide further cost savings

Column Dimensions		HPLC hardware pressure rated up to 275 bar / 4,000 psi						
		C18(2)	C8(2)	Phenyl-Hexyl	Sil			
2.1 x 50 mm (3/pk)	3 µm	GEN-3C182-0502/3PK	GEN-3C82-0502/3PK	GEN-3PHEX-0502/3PK	GEN-3SIL-0502/3PK			
4.6 x 100 mm (3/pk)	3 µm	GEN-3C182-1046/3PK	GEN-3C82-1046/3PK	GEN-3PHEX-1046/3PK	GEN-35IL-1046/3PK			
4.6 x 150 mm (3/pk)	3 µm	GEN-3C182-1546/3PK	GEN-3C82-1546/3PK	GEN-3PHEX-1546/3PK	GEN-35IL-1546/3PK			
2.1 x 50 mm (3/pk)	5 µm	GEN-5C182-0502/3PK	GEN-5C82-0502/3PK	GEN-SPHEX-0502/3PK	GEN-5SIL-0502/3PK			
4.6 x 150 mm (3/pk)	5 µm	GEN-5C182-1546/3PK	GEN-5C82-1546/3PK	GEN-5PHEX-1546/3PK	GEN-5SIL-1546/3PK			
4.6 x 250 mm (3/pk)	5 µm.	GEN-5C182-2546/3PK	GEN-5C82-2546/3PK	GEN-5PHEX-2546/3PK	GEN-5SIL-2546/3PK			

Setting science in motion to create a better world

Avantor[®] is a leading global provider of mission critical products and services to customers in the biopharma, healthcare, education & government, and advanced technologies & applied materials industries. We operate in more than 30 countries and deliver an extensive portfolio of products and services.